Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Pharm ; 19(6): 1892-1905, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1860276

ABSTRACT

Lipid nanoparticles (LNPs) are the leading technology for RNA delivery, given the success of the Pfizer/BioNTech and Moderna COVID-19 mRNA (mRNA) vaccines, and small interfering RNA (siRNA) therapies (patisiran). However, optimization of LNP process parameters and compositions for larger RNA payloads such as self-amplifying RNA (saRNA), which can have complex secondary structures, have not been carried out. Furthermore, the interactions between process parameters, critical quality attributes (CQAs), and function, such as protein expression and cellular activation, are not well understood. Here, we used two iterations of design of experiments (DoE) (definitive screening design and Box-Behnken design) to optimize saRNA formulations using the leading, FDA-approved ionizable lipids (MC3, ALC-0315, and SM-102). We observed that PEG is required to preserve the CQAs and that saRNA is more challenging to encapsulate and preserve than mRNA. We identified three formulations to minimize cellular activation, maximize cellular activation, or meet a CQA profile while maximizing protein expression. The significant parameters and design of the response surface modeling and multiple response optimization may be useful for designing formulations for a range of applications, such as vaccines or protein replacement therapies, for larger RNA cargoes.


Subject(s)
COVID-19 , Nanoparticles , Amino Alcohols , COVID-19/therapy , Caprylates , Decanoates , Humans , Liposomes , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Small Interfering
2.
ACS Synth Biol ; 11(4): 1555-1567, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1773922

ABSTRACT

Simple and effective molecular diagnostic methods have gained importance due to the devastating effects of the COVID-19 pandemic. Various isothermal one-pot COVID-19 detection methods have been proposed as favorable alternatives to standard RT-qPCR methods as they do not require sophisticated and/or expensive devices. However, as one-pot reactions are highly complex with a large number of variables, determining the optimum conditions to maximize sensitivity while minimizing diagnostic cost can be cumbersome. Here, statistical design of experiments (DoE) was employed to accelerate the development and optimization of a CRISPR/Cas12a-RPA-based one-pot detection method for the first time. Using a definitive screening design, factors with a significant effect on performance were elucidated and optimized, facilitating the detection of two copies/µL of full-length SARS-CoV-2 (COVID-19) genome using simple instrumentation. The screening revealed that the addition of a reverse transcription buffer and an RNase inhibitor, components generally omitted in one-pot reactions, improved performance significantly, and optimization of reverse transcription had a critical impact on the method's sensitivity. This strategic method was also applied in a second approach involving a DNA sequence of the N gene from the COVID-19 genome. The slight differences in optimal conditions for the methods using RNA and DNA templates highlight the importance of reaction-specific optimization in ensuring robust and efficient diagnostic performance. The proposed detection method is automation-compatible, rendering it suitable for high-throughput testing. This study demonstrated the benefits of DoE for the optimization of complex one-pot molecular diagnostics methods to increase detection sensitivity.


Subject(s)
COVID-19 , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL